Project: Artificial Intelligence and Patterns of Influence in the Arts and Entertainment IndustriesAre you interested in studying the arts and entertainment industries at the cross-section of business and computer science? The
Entrepreneurship and Innovation section at the
Amsterdam Business School of the
University of Amsterdam (UvA) invites applications for a PhD position in the Entrepreneurship and Innovation department. We are looking for talented PhD candidates with the ambition to work and succeed at the highest international academic level.
Project descriptionThe arts and entertainment sectors, part of the creative and cultural industries, are characterized by a complex web of patterns of influence. These influence patterns can take many forms, such as the transfer of ideas and techniques between different (artistic) disciplines, the adoption of (aesthetic) styles and trends by different artists and organizations, and the flow of resources and funding between different sectors. One of the key ways in which influence operates is through the fashioning, dissemination, and adoption of creative ideas. This means that influence relations are often characterized by a high degree of cross-pollination, with ideas and trends flowing freely between different sectors or disciplines. By examining the influence patterns between different cultural and creative disciplines - the data can take the form of text, static images, and/or video - we can better understand the mechanisms that drive the flow of ideas and techniques across diverse domains and identify the (key) drivers of innovation within and across sectors. For instance, directors and writers in the movie/TV industry may borrow elements from other films, art, or books to create new and original stories. Similarly, in the music industry, artists and musicians may draw inspiration from a wide range of sources, including other genres of music, art forms, and even technology. Blending different styles and influences can create new and innovative works and/or expand upon existing artistic traditions. Overall, the patterns of influence within the arts and entertainment industries are intricate, with new trends and styles emerging all the time. By studying these influence patterns, we can understand the factors that drive innovation and success within these industries, which may provide greater insights into how these factors can be harnessed to support entrepreneurship and growth. In addition, studying the influence relations can also shed light on the broader sociocultural forces that shape these industries, such as the role of entrepreneurs, cultural institutions, and commercial enterprises, the impact of technological innovation, and the influence of global trends and market forces.
This interdisciplinary project aims to better understand the factors that can explain innovation and entrepreneurial projects' success (and failures) by applying advanced computational machine learning approaches.
During your PhD, you will be trained to conduct quantitative empirical research aimed at advancing business and computer science research in top-tier academic journals and conferences. You will also be a member of a newly formed research lab: the Creative Industries (CI) Lab. As a member of the CI Lab within the Entrepreneurship and Innovation department, you will benefit from, and contribute to, the research agenda, networks, initiatives, resources, and the collegial environment in that Lab, as well as have the liberty to join one or more ongoing research projects carried out by members of our department.
What are you going to do?
- Develop novel multimodal deep learning approaches informed by the relevant business theories;
- Present research findings at prestigious business and computer science conferences and journals;
- Pursue and complete a PhD thesis within the appointed duration of four years;
- Attend classes and seminars (including those offered at other universities) to develop thinking and research skills further;
- Participate in and contribute to departmental research functions (PhD Day, research seminars, and research meetings);
- Assist in relevant teaching and knowledge dissemination activities.