This doctoral research will be at the intersection of sparsity and artificial intelligence. The research will investigate the potential of sparse-to-sparse training of deep neural networks within reinforcement learning frameworks. This innovative approach holds promise for creating highly efficient and scalable AI systems capable of learning with limited data and computational resources, pertinent in areas such as autonomous systems, online resource allocation, and complex decision-making processes.
Main Responsibilities:
- Conduct original research on sparse-to-sparse training techniques, exploring new frontiers in algorithmic development for DRL.
- Investigate the mathematical underpinnings of sparsity in deep reinforcement learning and its effects on learning dynamics, and generalization.
- Design and evaluate experiments to validate the effectiveness of sparse-to-sparse training in various scenarios and benchmarks.
- Publish and present research findings in top-tier conferences (e.g., Machine Learning, JMLR) and journals (e.g., NeurIPS, ICLR, ICML, IJCAI, AAMAS, ECMLPKDD).
- Collaborate with a international team of researchers and industry partners.
The successful candidate will be embedded in the DMB research group, and the supervision will be ensured by Dr. Elena Mocanu and Prof. dr. Maurice van Keulen. This PhD position is part of the Modular Integrated Sustainable Datacenter (MISD) project and will have ample collaboration opportunities. As part of the MISD project effort led by Elena Mocanu, we are opening multiple positions (two Ph.D. candidates and one PostDoc) to join us and work at the intersection of dynamic sparse training in neural networks on various tasks.
Useful links: